The 9" International Conference on e-Business (iNCEB2010)

November 18 — 19% 2010

Seeking a new Paradigm for Software Project Management

—is it Agile, Lean or a Model of Concurrent Perception

Roy Morien

roym@nu.ac.th

Department of Computer Science and Information Technology, Faculty of Science

and Faculty of Management & Information Sciences

Naresuan University, Phitsanulok, Thailand

1. Abstract

Since the late 1970s the practice of Software Project
Management seems to have been quite constrained
within the basic strictures of the Waterfall Model of
development and project management. The literature
abounds with suggestions of how to improve this way of
thinking. Rigor in planning, estimating and following the
plan has remained the centre points of such suggestions.
This has not proved to be successful.

This paper will draw together concepts and practices of
‘agile development’, ‘lean product development’,
‘chaordic systems’ and ‘the Model of Concurrent
Perception’ to suggest a new Paradigm of Software
Development and Project Management.

2. Introduction

The true nature of the software development process and
a clear definition of its characteristics is missing from
the literature. The names in use clearly imply an activity
akin to civil engineering and construction projects.
Principle among these is the set of practices termed
Software Engineering. In Object Oriented development,
the Pattern oriented approach includes a Pattern of
‘software factory’. We see discussion about the role of
the Database Architect, a primarily construction role and
activity. Project planners are exhorted to ‘plan the work
and work the plan’, and requirements documents are
referred to as blueprints. A professional project
management activity is the development of a Gantt
chart, and students of Project Management inevitably
are taught to use some form of project management tool,
such as Microsoft Project®.

The Waterfall Model of development clearly seeks to
achieve certainty in the future project activities and
certainty in outcomes. Contracts are drawn in such a
way as to give clients the confidence of certainty in what
they can expect to receive at a certain time in the future,
to be developed at a certain cost, with certain
functionality (that they themselves must provide, of
course). The contracts that are drawn up seemingly
provide the supplier with certainty of income, certainty
of scope, therefore certainty of project activity,
undertaken with certainty according to a plan.

Nonetheless, adherents of the Waterfall Approach have
frequently modified the Waterfall Model to include

33

feedback loops, necessary to overcome the initial model
of a system without feedback mechanisms. The model
has been enhanced by the adoption of Change
Management practices, which fundamentally
acknowledges that things do change with the passing of
time. This, however, is given restrictive form in favour
of the principle of adhering to the plan. Moving off the
plan, failing to achieve critical path outcomes as
planned, including different matters in the plan, are all
seen to be undesirable. The epithet ‘scope creep’ is
applied to this wayward practice, and is always
considered undesirable and a sign of poor project
management.

[
Y

Fgrie 7, Vet Fiin 08 hvin 4 g 1 e K 9 By e 3 Gt

To ensure that this discussion is understood, here is a
diagram of The Waterfall Model, as published in Royce
[1]. Interestingly, Royce seems to have meant that these
are the activities involved in sofiware development,
even though he labelled them ‘the implementation
steps’. What appears to be an unfortunate use of words
is what seems to have given rise to the adoption of this
Model of linear or serially phased development, which
was not what Royce intended.

This paper will explore an alternative view of software
development projects, and propose a new way of
thinking about the activity of software development, and
software project management. The discussion will draw
upon management literature normally considered
outside the scope of software project practice, and will
explore the nature of the software development activity,
and consider a new approach to software project
management based upon the different characteristics
identified as being the more correct nature of that
activity, not the engineering oriented nature that has
hitherto been considered the received way.

ydel
ydel
nge
ally
3 of
"our
"the

s all
is
/ays
nect

is a
Jyce
hese
ient,
ition
ords
“this
hich

ware
; of
and

lered
will
vity,
oject
stics
that

RS-

The 9™ International Conference on e-Business (INCEB2010)

The Four Dimensions of Software Projects

In the book Rapid Development, by Steve McConnell
[2], it says that a system development activity includes
four things that are important: These are:

- People - Tools - Process - Product

A development activity is done by PEOPLE (for
PEOPLE), using development TOOLS, while following
a PROCESS, to produce a PRODUCT.

Clearly, all four must be included and considered in any
discussion of the successful project. However,
McConnell states that

.. we now know with certainty that peopleware issues
have more impact on software productivity and software
quality than any other factor (at p.12)

.. it is now crystal clear that any organization that’s
serious about improving productivity should look first to
the peopleware issues of motivation, teamwork, staff
selection and training. (at p.13)

Many other authors have explored the importance of
‘the people’ in organisations and organizational
activities. Senge [3], quoting Kazuo Inamori, founder
and president of Kyocera, a world’s leading company in
advanced ceramics technology. ‘whether it is research
and development, company management, or any other
aspect of the business, the active force is ‘people’.
Champy, in discussing reengineering management[4]
states ‘... responsibility and authority are so widely
distributed throughout the organization that virtually
everyone becomes a manager, if only of his or her own
work’ (at p.70), and “...our core values, our company
culture based on trust and respect for individuals. It’s
about empowering people at the lowest level of the
organization fo run with their ideas. That freedom
Josters a lot of creativity and enthusiasm’. (at p.70), ‘We
Just started giving out assignments and trusting people
to carry them through.’ (at p.70) and ‘We are all in this
fo build a sustained competitive advantage. You are not
here solely to perform your function. You are here to
add value.’ (at p.73). Finally, Champy discussed * ...
enabling (people); redesigning work so that people can
exercise their skills and capabilities to the fullest extent
possible — then stepping back and letting it happen.’ (at
p-115). de Geus [5] states “... organizations’ true nature
is that of a community of humans.’

It is possible to find many more references in the

literature to aspects of human behaviour in
organizations, references to the ability of people to work
independently without close supervision, to be creative,
to be self-managed, and the central role that ‘people’
play in the success or failure of organizational processes.
Developing software is a human and business activity. It
is also a technical activity, but first, it is a ‘human-
centric’ activity. Therefore, any development process
will only be effective if it enables the people to perform
at their best, and most creative. The development
process must enable leaming, and enhance the

34

November 18% — 19% 2010

capabilities of the developers. Project management must
be people-management, first and foremost, and
acknowledge that the people are well-trained, competent
professionals, or are at least eager and willing to learn
and become so. Developers will contribute the technical
knowledge to the development project, and the client, or
client representative, must contribute the business
knowledge. This means that the developers, and the
clients, must work closely together, collaboratively, and
must recognise each others’ abilities and knowledge.

3. Managers Must Manage, Damaging as
that is.

One of the problems with having managers is that they
always seem to want to manage things. Unfortunately,
this activity is usually manifested as a ‘command and
control’ approach to directing the lives and work of
subordinates. There is a supposition, not always correct,
that because the manager is the manager, and has
subordinates, then the manager knows better than
anyone what should be done, and, more particularly,
how it should be done and how long it should take. This
has too often proven incorrect and even damaging to the
prospects of the business unit, and the business as a
whole. In their book The Wisdom of Teams: creating the
high-performance organization, Katzenbach & Smith
[5] recount the experience of a major railroad company
which, in the early 1980’s, was facing huge competitive
challenges following deregulation of transport in the US.
A highly successful team was opposed by senior
managers. The management culture (fundamentally an
hierarchical, command and control culture) had not
changed for 100 years, and the fact that managers
continued to manage, imposing a command and control
management regime, was leading the company to
oblivion. It was only after this management culture was
overcome that the company’s fortunes were
substantially —improved. Modern ‘management’
demands leadership, not control.

This command and control approach to project
management has been the main management style on
most software projects which have operated under the
phased, linear development model as described in The
Waterfall Model (now a generic name for the style of
project management that has linear or serially phased
activities). It must be so, because that development
model demands up-front plans, up-front requirements
determination, adherence to the plan, and does not allow
for adaptation of plans or the evolution of requirements.
Nor does it have regular and frequent feedback cycles,
relying on the project manager’s estimates and plans to
be correct ab initio. The project manager must maintain
strict control over all activities to ensure their estimates
are met.

4. Chaordic Systems & Ecosystems

In the landmark book Birth of the Chaordic Age [6],
Dee Hock coined the term ‘chaordic’ to describe ‘the

The 9™ International Conference on e-Business (iNCEB2010)

behavior of any self-governing organism, organization
or system which harmoniously blends characteristics of
order and chaos’. Tt is suggested here that the activity of
software development, as a system, manifests those
characteristics. Latterly, the terminology of ‘the digital
ecosystem’ has also indicated that ‘The digital
ecosystem is defined as an open, loosely coupled,
demand-driven, domain clustered, agent-based self
organised collaborative environment ... for a specific
purpose or goal, and everyone is proactive and
responsive for their own benefit or profit. The essence
of digital ecosystems is creating value by making
connections through collective intelligence. Digital
Ecosystems promote collaboration instead of unbridled
competition and ICT based catalyst effect in a number of
domains to produce networked enriched communities.’
It is suggested that a sofiware development project is
better described as an ecosystem, with many
characteristics of being a digital ecosystem; ‘promoting
collaboration’, ‘a collaborative ... for a specific
purpose or goal (the development of a system)’,
* creating value by making connections through
collective intelligence (sec The Wisdom of Teams)’.

Can these be at least some of the characteristics of the
software development activity? Is i, or can it be,
chaordic, inasmuch as it can be a self-governing
organism, or an ecosystem that promotes collaboration
and achieve a specified purpose or goal. It is suggested
that this is indeed the case.

Therefore, as such, it defies a management ‘command
and control’ style. As Champy (op.cit.[4] states,
variously, ‘You must have a culture that encourages
qualities like relentless pursuit... bottomless resources
of imagination ... and both smooth teamwork and
individual autonomy’ (and therefore) ‘... You cannot
have a culture of obedience to chains of command and
the job slot. It just won’t work.” and ‘the best approach
to such a system is ‘... enabling (people); redesigning
work so that people can exercise their skills and
capabilities to the fullest extent possible — then stepping
back and letting it happen.” That is, let the ecosystem
work, let the harmonious blend of order and chaos
occur, and create a collaborative environment.

5. Project Success Criteria

In the traditional Waterfall Approach, every attempt is
made, at the start, to impose order on the process. Has
this been successful? Can it be successful? Many
research projects have identified the unfortunate
statistics of failure, such as only 2% of systems were
used as delivered, and 28% of systems that were paid for
but were never delivered, and 47% of delivered systems
were never used. "...53% of projects overrun cost
estimates by 189% or more (at a cost of US$59 billion
per year in the US alone)’ (Standish Group, [7]). This
research is supported by a US government study on
software development projects, which revealed that 60%
of projects were behind schedule and 50% were over

35

November 18" — 19% 2010

cost (cited in Garmus & Herron, [8]). The study also
showed that 45% of delivered projects were unusable, a
dismal comment on the state of software development
projects. The experience in Australia of the Australian
Customs Department is instructive. Initial estimates of
$35 million, and 3 years, blew out to $250 million and 5
years, with huge and damaging outcomes when the
system failed to perform properly when ‘switched on’.
An important question is - Why is this? Perhaps it is
because ‘(project management activities) are undertaken
in the mistaken belief that what sometimes works in
independent manufacturing processes will succeed in
software development’. This view of software
development as a manufacturing process, oOr an
engineering process, has been significantly deprecated
by many authors, even though it seems to have been a
central philosophy upheld by many others - cf: the
terminology of ‘software engineering’. For example,
‘..someone grabbed hold of the construction-
manufacturing paradigm which suggests that we can
layout an architecture, design the system, and construct
it. Experience has shown that this is a painful and
expensive way to develop dinosaurs.” and ‘The
construction paradigm is the major reason that so many
customers are dissatisfied...’ and °..software doesn't
build, it grows and evolves’ (Arthur, [9]).

There is an interesting implication to be drawn from
these statements, which can be stated in these terms -
project success is measured against three standard
criteria (within cost budget, within time schedule, within
defined scope), yet two of those criteria are not met in at
least half of projects, or, projects are evaluated in terms
of how well they meet estimated cost budgets and
schedule estimates, yet at least half of these projects fail
to meet these estimates by a substantial margin. As for
the third criteria; within scope, the Standish Group
(op.cit [7]) reports that only 7% of systems delivered
100% of required features (46% of systems delivered
more than 75% of required features, and overall, on
average, systems delivered only 61% of required
features). An interesting further consideration is that
research has shown that a substantial proportion, up to
60%, of features delivered in many systems are never or
rarely used by the users of the system.

6. The Model of Concurrent Perception

Can there be an harmonious blend of order and chaos?
Rubinstein et al [10] proffers a model of decision
making behaviour that describes most compellingly the
characteristics of chaordic systems. It is this model; The
Model of Concurrent Perception, that seems entirely
appropriate to the activity of software development. The
Model of Concurrent Perception ‘moves us from
questions to answers, from divergent perceptions to
convergent perceptions, from individual creativity to
team implementation, from abstract thinking to concrete
action, from quick experimentation to quality results,
from deliberate chaos to emergent order’ and ‘chaos

A O U s -

o

[

BT
en
in

arc

ted
na
the
ale,
on-
can
‘uct
and
The
any
sn't

rom

lard
thin
nat

and
fail
y for
‘oup
ered
ered
, on
ured
that
Pp to
2r or

1aos?
ision
y the
. The
irely

from
1s to
ty to
crete
sults,
shaos

The 9™ International Conference on e-Business (iINCEB2010)

should be deliberately created up front’. By ‘chaos’
they mean that the situation be thrown open to
participation and discussion by all interested
stakeholders, and a rich mix of views, opinions,
suggestions, expertise and ideas be aroused, thus
creating a ‘chaotic’ situation from which order will
emerge. ‘Questions need to be raised from the outset.
When you start out with divergent questions, you will
end up with convergent answers. When you start out
with chaos, you will end up with order.’

To create ‘certainty’ is to imply that the future can be
controlled, which is a fallacy. Uncertainty is the
hallmark of the future. Qurs is not to know the future,
but just to plan for it, including whatever contingencies
can be foreseen. The Model of Concurrent Perception
says this in this way; This (start with chaos, end up with
order) is far preferable to the scenario where everyone
coasts through a seemingly structured and orderly
project and the end result is chaos’. This last phrase
seems to almost perfectly describe the traditional phased
software development approaches where every effort is
made, by the creation of a detailed and ‘frozen’
requirements specification, and a detailed plan that is
rigorously held to, to have ‘a structured and orderly
project’”. ‘Plan the work and work the Plan’ is
seemingly the motto of the ‘successful” project manager.
Research has shown that the end result of such an
approach seems too often to end in chaos, characterized
by disappointment, rejection and refusal to use the
resultant system. Or the delivery of a system that is less
than useful, and has low business value. These statistics
clearly indicate a descent into chaos from a starting
point of imposed order. Assuming that these systems
were developed using a traditional phased approach,
which is not an unreasonable assumption, we can see
relevance and correctness of the situation of ‘seemingly
structured and orderly project’ where the ‘end result is
chaos’.

There are many examples of highly successful projects
that seem to be well described by the Model of
Concurrent Perception including the development by the
Boeing Corporation of the 777 airliner, and the
development of the Lexus luxury motor vehicle by the
Toyota Company.

In the development of the 777 airliner, for example, the
project manager ‘created more than 200 design/build
teams with members from design, manufacturing,
suppliers and customer airlines — everyone from pilots to
baggage handlers’. All project teams and members were
urged to ‘share early and share often’. The project
scenario being painted here is clearly the “...start out
with chaos’ situation, which, in this case resulted in the
creation of a highly successful airliner.

In the development of the Lexus motor vehicle, as
described in Liker [11] it is stated that ‘(in vehicle
design) Effectiveness starts with what is popularly being
called the ‘fuzzy front-end’. The project leader stated
‘The end result was not just my effort alone, but all the

36

November 18% - 19 2010

people along the way who originally opposed what 1
was doing, and who all came around and were able to
achieve all these targets that I had set in the first place’.
The Lexus motor vehicle is a very popular model in the
marketplace. Various aspects of the Model of
Concurrent Perception were clearly able to be seen here.
‘Questions need to be raised from the outset’; indeed
many questions were raised about design issues, even
about the need for the model. ‘When you start out with
divergent questions, you will end up with convergent
answers’ was demonstrated by the people ‘who all came
around’ and achieved the design targets. ‘When you start
out with chaos, you will end up with order’.

A much- performed activity in many projects, including
software development projects, is that of brain storming.
Brain storming sessions are govemed by some quite
strict rules, including ‘At the start, every idea is accepted
without argument or disagreement’. Successful brain
storming meetings create the initial chaos of many ideas
and suggestions, and then allow the order to emerge as
decisions agreed upon. SWAT analysis can be seen also
as a chaos-creating activity from which order emerges.
Estimating methods such as the Wide Band Delphi [12]
have an emphasis on ‘brain storming’, or shared
decision making.

7. The Learning Organization

Elsewhere we can go to the literature about a
management discipline outside IS and Computer
Science to seek insight into the best way to develop
software systems. In this case, to view the software
development function in terms of being a Learning
Organization.

The concept and practice of the leamning organization is
amply discussed in Senge (op.cit.[3]). Peter Drucker
defined a learning organization being necessary because
‘The function of the society of post-capitalist
organisations ... is to put knowledge to work ... it must
be organised for constant change’.

The Core Capabilities of a Leamning Organization are
summarized as (1) Creative orientation, (2) Generative
discussion, and (3) Systems perspective (Maani &
Cavana, [13] at p138.). These concepts are elaborated to
mean:

o Creative orientation : The source of a genuine desire to
excel. .. The source of an intrinsic motivation and
drive to achieve ... favors the common good over
personal gains.

» Generative discussion: A deep and meaningful
dialogue to create unity of thought and action

o Systems perspective: The ability to sece things
holistically by understanding the connectedness
between parts.

Although Senge published nine years before Rubinstein
& Firstenberg ([10], op.cit.) there are many similarities
in their discussion. In Team Learning, Senge states (at
p-236) ‘team learning (has) the need to think insightfully

The 9" International Conference on e-Business (iNCEB2010)

about complex issues ... to tap the potential of many
minds’. Other statements about team learning include °..
team learning involves mastering the practices of
dialogue and discussion ... there is a free and creative

¢

exploration of complex and subtle issues ... °.

This implies, it is suggested, the chaos that is present in
the participant behaviour modeiled by the Model of
Concurrent Perception, and then the learning team
converges on the order that is the hoped for outcome of
‘divergent perceptions to convergent perceptions’.

Similarly, when Maani & Cavana ([13], op.cit.) refer to
‘Generative discussion: A deep and meaningful dialogue
to create unity of thought and action’, we can
reasonably interpret the ‘deep and meaningful dialogue’
to be the chaos and the ‘create unity of thought and
action’ to be the emergence of order, all of which seems
readily defined by the Model of Concurrent Perception.

Another viewpoint here is what has been called ‘the
wisdom of the crowd’, or ‘the wisdom of crowds’. In
The Wisdem of Crowds: Why the Many Are Smarter
Than the Few and How Collective Wisdom Shapes
Business, Economies, Societies and Nations, James
Surowiecki [14] proposes the idea that the aggregation
of information in groups results in decisions that are
often better than could have been made by any single
member of the group. Its central thesis, that a diverse
collection of independently-deciding individuals is
likely to make certain types of decisions and predictions
better than individuals or even experts. This concept of
group decision making has also been termed, somewhat
inelegantly, as ‘the wisdom of the herd’ [15].

8. Leadership and Teams

Katzenbach et al ([S], op.cit) describe the work of a
team involved in planning and implementing a major
new business strategy for a large railroad company in
the US, in the early 1980’s. The efforts of the team
were ultimately highly successful, in the face of
entrenched opposition and even sabotage within the
higher management of the company. The role of the
leader of the team was a major factor in this success.
The success of the team’s project was attributed to (1)
dedication to a common purpose (2) acceptance of a
performance challenge (3) a sense of mutual
accountability (4) candor and mutual respect between
team members (5) a shared affection for each other,
arising from the shared experience, and the shared
success.

It is doubtful that a traditional project manager dictating
the activities of the ‘subordinates’ in a ‘command and
control’ style of management, could have achieved the
same highly successful result. This has been the
experience in many development projects, with the
project manager ultimately disgraced for his ‘failure’ to
estimate ‘correctly’, control rigorously, decide correctly,
and designate appropriately.

Another telling case study on the idea of leadership as a

37

November 18 — 19% 2010

success factor, published in Maani & Cavana ([13],
op.cit.) is where, inn 1995, a team from New Zealand
won the famous and prestigious yacht trophy, called the
Americas Cup. This was only the 2nd time in 146 years
that a non-US syndicate had won the trophy ... Australia
had won it once before.

The amazing thing was that the NZ team’s performance
surpassed any previous campaign.

How did they do it? The success has been attributed to:
o The inspirational leadership of the syndicate Leader
» The strong sense of community within the team

o The openness of communication between team

mermbers
o ‘Customer’- led development — the sailors!!!

o The sustained rate of continual improvement (of the
boat speed)

e The level of commitment and purpose by all
participants

This syndicate exhibited many of the valuable traits of a
‘learning organization’. The contribution of ‘leadership’
to this outstanding success also cannot be underestimated.

So what is a team? Katzenbach et al ([5], op.cit) again
provides a suggestion. ‘A team is a small number of
people with complementary skills, who are committed to
a common purpose, performance goals, and approach
for which they hold themselves mutually responsible.” 1t
is suggested further that the ‘small number’ be optimally
10 or less.

A recent article [16] about Pixar (www.pixar.com), the
organisation that develops full-length animated movies,
is revealing as to Pixar’s successful approach to ‘product
development’, and its project management in a creative
environment, which, as has been implied often in this
article, are characteristics of software development
projects. In summary, the product development
approach has the following characteristics:

¢ a cohesive team moving from project to project. ‘4
team of moviemakers who know and trust one another
in ways unimaginable on most sets.’

o daily meetings where ‘they ruthlessly “shred” each
Sframe’.

ean environment where mistakes are seen as
opportunities for learning and improvement. ‘We know
screwups are an essential part of making something
good.’

o carly identification of mistakes. ‘our goal is to screw
up as fast as possible’.

e Upper management support and involvement. ‘The
upper echelons also subject themselves to megadoses
of healthy criticism’. This is leadership, not
‘management’.

Clearly, this approach, which has demonstrably been
shown to produce highly successful products, is
everything that ‘agile thinking’ tries to be; highly
iterative, fast feedback cycles, total transparency of

gg4dr

ha

10) &
010
{13],
iland
1 the

years
tralia

ance

to:

team

f the
/all

sof a
ship’

ated.

again
er of
ted to
~oach
le’ It
mally

), the
yvies,
oduct
zative
n this
yment
yment

ct. A
other

each

n as
know
sthing

screw

‘The
doses
not

been
ts, is
aighly
cy of

The 9" International Conference on e-Business (INCEB2010)

progress and outcomes, self-managed, validation and
verification frequently and systemically.

9. Applicability & Relevance to Agile
Methodologies

Included under the heading of Agile Methodologies for

the purpose of this paper are development approaches

that have been called Software Prototyping, Rapid

Application Development, Iterative Development, and

specifically the “agile’ approaches:

« People Focused: Collaborative, Self-Organizing and
Self-Managing Teams.

« Empirical and Adaptive: ‘empirical’, ‘adaptive’,
‘evolutionary’, ‘experiential’ development, planning
and estimating.

« Iterative: a series of short iterations each of which
produces a useable enhancement to the system.

« Incremental: delivering increments to the system.

« Evolutionary: requirements in detail are continuously
discovered, and are continually evolving.

« Emergent: The characteristics of the system emerge as
parts are added.

« Adaptive: adaptive planning and estimating.
« Just-in-Time Requirements Elicitation: Requirements
are stated in detail ‘just in time’ to develop them.

« Knowledge-Based: knowledgeable, self-managing
team, continual knowledge sharing and learning.

+ Client Driven, ‘Pull-Based’ development: Only
develop what is asked for by the Client, and when the
Client asks for it.

Agile methods emphasize project transparency,
continual communication and collaboration between
project partners.

10. Conclusion

It is suggested that computer software is now so
ubiquitous in everyday private and commercial life that
no discussion on business, business strategies etc. can
ignore matters pertaining to software. The recent ‘fall
from grace’ of the Toyota Motor Company, once an
icon of quality and effective management, demonstrates
in the negative the impact of computer software in
business and daily life of virtually everyone. So the
manner in which computer software development is
managed must be of interest in any business forum.

Software development is seen as a chaordic activity,
defying orderliness and certainty, and therefore
demanding an appropriate approach to the management
of that activity. A paradigm of project management that
includes elements of what has been termed The Model
of Concurrent Perception, the Learning Organisation,
Leadership and Team Dynamics, has been discussed.
The software project management approach traditionally
used, based on, and inherited from civil engineering and
construction project management practices is seen to
have failed, as has the management model described as

38

November 18" — 19% 2010

‘command and control’. The ‘agile’ approaches
proffered by a growing number of experts in software
development and software project management is the
anti-thesis of this command and control style, and is
well supported from the literature on management styles
and practices, and case studies, that never seem to make
it into software project management and software
engineering curriculum.

11. References & Bibliography

[1] Royce, Winston, Managing the Development of Large
Software Systems, Proceedings IEEE WESCON,
August 1970, IEEE.

[2] McConnell, Steve, Rapid Development: Taming Wild
Software Schedules, Microsoft Press, Published June
1996

[3] Senge, Peter, The Fifth Discipline — The Art & Practice
of the Learning Organization, Curtency Doubleday,
1990

[4] Champy, James, Reengineering management: The
Mandate for New Leadership, Harper-Collins
Publishers, 1995

[5] Jon R. Katzenbach, Douglas K. Smith, The wisdom of
teams: creating the high-performance organization,

Harvard Business School, 2008

[6] Hock, Dee, Birth of the Chaordic Age, Visa
International, 1999

[7] Standish Group (1994). The Chaos Report (1994)
[online]. Available WWW:

http://www standishgroup.com/sample_research/chaos
1994 1.php Accessed December 14th, 2003

[8] Garmus, David and David Herron (2001), Estimating
Software Earlier and More Accurately, excerpted from
Function Point Analysis Measurement Practices for
Successful Software Projects, Addison-Wesley
Information Technology Series, 2001.

[9] Arthur, L.J., Rapid Evolutionary Development:
Requirements, Prototyping & Software Creation, Wiley,
1992

[10] Rubinstein, Moshe F. and Iris R Firstenberg, The
Minding Organisation, John Wiley & Sons, 1999.

[11] Liker, Jeffrey K., The Toyota Way, McGraw-Hill,
2004

[12] Wide-Band Delphi,
http://en.wikipedia.org/wiki/Wideband_delphi,

accessed May 31st, 2010.

[13] Maani, Kambiz E. & Robert Y. Cavana, Systems
Thinking, Systems Dynamics — Managing Change and
Complexity, Pearson Education NZ, 2007

[14] James Surowiecki, James, The Wisdom of Crowds:
Why the Many Are Smarter Than the Few and How
Collective Wisdom Shapes Business, Economies,
Societies and Nations, Random House, 2005

[15] ‘the wisdom of the herd’,
http://en.wikipedia.org/wiki/Collective_wisdom,
accessed May 31st, 2010

[16] Wired Magazine, Animating a Blockbuster: How
Pixar Built Toy Story,
http://www.wired.com/magazine/2010/05/process
pixar, May 24th, 2010, accessed August 30th, 2010.

